Uji Validitas dan Reliabilitas Instrumen dengan R

Artikel ini akan membahas contoh bagaimana melakukan pengujian validitas dan reliabilitas instrumen kuesionair sebelum digunakan untuk mengumpulkan data sample penelitian.

Misalkan kita akan menguji 2 variabel yang bernama KnowledgePreneur Leadership (KPL) yang memiliki 7 indikator dan Technopreneur Harmony (TPH) dengan 5 indikator, kita telah mengumpulkan beberapa data awal untuk pengujian, dengan data tabel9 di bawah ini ada 23 data pengujian yang dikumpulkan, langkah berikutnya adalah import data kita ke data frame di R, jika anda adalah pengguna awal R, silahkan dapat melihat artikel tutorial kami sebelumnya mengenai proses import data ke R,

respKPL1KPL2KPL3KPL4KPL5KPL6KPL7TPH1TPH2TPH3TPH4TPH5
1534553535234
2555555555554
3556565564554
4655564566666
5656666643644
6545243552554
7324343564342
8666666664456
9653363555566
10323533311233
11555555555555
12666666666544
13554645666656
14655665544444
15555535553335
16555555555555
17655635622666
18556656555546
19554655444454
20666656666665
21443634333333
22554654665655
23554654555544

Pengujian Validitas Instrumen variabel KPL

Pengujian validitas instrumen kita akan lakukan dengan pengukuran korelasi antar indikator dengan total untuk tiap variabelnya. Pengukuran korelasi akan menggunakan fungsi cor() dan bantuan package dplyr untuk fungsi select() dengan perintah di bawah ini,

Pengujian validitas pada variabel KPL

> library(dplyr)
> cor(select(table9, KPL1, KPL2, KPL3, KPL4, KPL5, KPL6, KPL7, sumKPL))
  
             KPL1      KPL2      KPL3      KPL4      KPL5
   KPL1   1.0000000 0.8321850 0.5585926 0.2948178 0.6108004
   KPL2   0.8321850 1.0000000 0.6000601 0.4752553 0.5095512
   KPL3   0.5585926 0.6000601 1.0000000 0.2519275 0.4598479
   KPL4   0.2948178 0.4752553 0.2519275 1.0000000 0.1079729
   KPL5   0.6108004 0.5095512 0.4598479 0.1079729 1.0000000
   KPL6   0.5431911 0.7651682 0.7801599 0.6733389 0.3321937
   KPL7   0.6623912 0.5851437 0.6114632 0.1696273 0.4171469
   sumKPL 0.8299236 0.8937834 0.7958107 0.5829337 0.6417921
               KPL6      KPL7    sumKPL
   KPL1   0.5431911 0.6623912 0.8299236
   KPL2   0.7651682 0.5851437 0.8937834
   KPL3   0.7801599 0.6114632 0.7958107
   KPL4   0.6733389 0.1696273 0.5829337
   KPL5   0.3321937 0.4171469 0.6417921
   KPL6   1.0000000 0.4871728 0.8720856
   KPL7   0.4871728 1.0000000 0.7133480
   sumKPL 0.8720856 0.7133480 1.0000000 

kita dapatkan bahwa korelasi setiap indikator untuk variabel KPL adalah di atas 0.5 (yang di bold), hal ini menunjukkan hubungan yang kuat antara indikator dengan variabel KPL atau dapat dikatakan setiap indikator yang kita gunakan untuk mengukur variabel KPL sudah valid.

Pengujian Reliabilitas Instrumen variabel KPL

Pengujian reliabilitas instrumen kita akan lakukan dengan pengukuran Cronbach’s α dari data, analisis Reliability akan memerlukan tambahan fungsi alpha() dari package psych (mungkin perlu diinstal terlebih dahulu), selanjutnya uji reliabilitas dilakukan dengan perintah di bawah ini,

> library(dplyr)
> library(psych)
> alpha(select(table9,KPL1,KPL2,KPL3,KPL4,KPL5,KPL6,KPL7)) 
 
 Reliability analysis 
 Call: alpha(x = select(table9, KPL1, KPL2, KPL3, KPL4, KPL5, KPL6,
     KPL7))
 raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd
       0.87      0.88    0.93      0.51 7.3 0.041  4.9 0.77
  median_r
      0.54
 lower alpha upper     95% confidence boundaries
 0.8 0.87 0.95
 
Reliability if an item is dropped:
      raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
 KPL1      0.84      0.85    0.90      0.48 5.6    0.050 0.040
 KPL2      0.83      0.84    0.89      0.46 5.2    0.056 0.039
 KPL3      0.85      0.86    0.89      0.50 5.9    0.050 0.043
 KPL4      0.89      0.89    0.92      0.58 8.4    0.036 0.019
 KPL5      0.88      0.88    0.94      0.55 7.4    0.040 0.037
 KPL6      0.83      0.85    0.86      0.48 5.5    0.054 0.039
 KPL7      0.86      0.87    0.93      0.52 6.5    0.046 0.043
      med.r
 KPL1  0.49
 KPL2  0.49
 KPL3  0.51
 KPL4  0.59
 KPL5  0.59
 KPL6  0.51
 KPL7  0.54
 
Item statistics
       n raw.r std.r r.cor r.drop mean   sd
 KPL1 23  0.83  0.84  0.84   0.77  5.1 0.87
 KPL2 23  0.89  0.89  0.90   0.84  4.7 1.06
 KPL3 23  0.80  0.80  0.79   0.71  4.7 1.01
 KPL4 23  0.58  0.56  0.51   0.42  5.2 1.13
 KPL5 23  0.64  0.64  0.56   0.50  4.8 1.07
 KPL6 23  0.87  0.86  0.87   0.81  4.6 1.08
 KPL7 23  0.71  0.74  0.67   0.62  5.1 0.85
 
Non missing response frequency for each item
         2    3    4    5    6 miss
 KPL1 0.00 0.09 0.04 0.52 0.35    0
 KPL2 0.09 0.04 0.09 0.65 0.13    0
 KPL3 0.00 0.13 0.26 0.35 0.26    0
 KPL4 0.04 0.09 0.00 0.35 0.52    0
 KPL5 0.00 0.17 0.13 0.39 0.30    0
 KPL6 0.00 0.22 0.17 0.39 0.22    0
 KPL7 0.00 0.09 0.04 0.57 0.30    0

dari hasil pengujian di atas kita lihat nilai raw_alpha sebesar 0.87 menunjukkan nilai reliabilitas yang sudah cukup bagus untuk indikator variabel KPL.

Pengujian di atas menunjukkan bahwa instrumen variabel KPL sudah layak digunakan untuk pengumpulan data sample penelitian. Bagaimana dengan variabel TPH, silahkan anda mencobanya, jika langkah anda tepat maka seharusnya akan didapat: Korelasi TPH1 0.7746555, TPH2 0.7686643, TPH3 0.8262377, TPH4 0.7754025, TPH5 0.7032110, dan Cronbach’s α 0.82

Demikian tutorial untuk pengujian instrumen penelitian anda, selamat mencoba, sukses selalu.

Leave a Reply

Your email address will not be published. Required fields are marked *